强大的语音情感识别取决于语音特征的质量。我们提出语音功能增强策略,以改善语音情感识别。我们使用了Interspeech 2010挑战功能集。我们从特征集合和应用原理分析分析到子集中确定了子集。最后,这些功能水平融合。在应用特征以识别情绪之前,使用T分布的邻居嵌入(T-SNE)分析所得的功能集。将该方法与文献中使用的最新方法进行了比较。经验证据是使用两个著名数据集绘制的:情感语音数据集(EMO-DB)和Ryerson Audio-Visual Visual Envial语音和歌曲(Ravdess)分别用于两种语言,即德语和英语。与基线研究相比,我们的七个情绪中有六个情绪中有六个情绪中有六个情绪中有六个情绪中的六个情绪中的六个情绪中的六个情绪中的六个情绪中的六个情绪中的六个情绪中的六个情绪中获得了11.5 \%的平均识别增益,而RAVDESS数据集中的七个情绪为13.8 \%。
translated by 谷歌翻译
It is indisputable that physical activity is vital for an individual's health and wellness. However, a global prevalence of physical inactivity has induced significant personal and socioeconomic implications. In recent years, a significant amount of work has showcased the capabilities of self-tracking technology to create positive health behavior change. This work is motivated by the potential of personalized and adaptive goal-setting techniques in encouraging physical activity via self-tracking. To this end, we propose UBIWEAR, an end-to-end framework for intelligent physical activity prediction, with the ultimate goal to empower data-driven goal-setting interventions. To achieve this, we experiment with numerous machine learning and deep learning paradigms as a robust benchmark for physical activity prediction tasks. To train our models, we utilize, "MyHeart Counts", an open, large-scale dataset collected in-the-wild from thousands of users. We also propose a prescriptive framework for self-tracking aggregated data preprocessing, to facilitate data wrangling of real-world, noisy data. Our best model achieves a MAE of 1087 steps, 65% lower than the state of the art in terms of absolute error, proving the feasibility of the physical activity prediction task, and paving the way for future research.
translated by 谷歌翻译
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.
translated by 谷歌翻译
Quantitative cephalometric analysis is the most widely used clinical and research tool in modern orthodontics. Accurate localization of cephalometric landmarks enables the quantification and classification of anatomical abnormalities, however, the traditional manual way of marking these landmarks is a very tedious job. Endeavours have constantly been made to develop automated cephalometric landmark detection systems but they are inadequate for orthodontic applications. The fundamental reason for this is that the amount of publicly available datasets as well as the images provided for training in these datasets are insufficient for an AI model to perform well. To facilitate the development of robust AI solutions for morphometric analysis, we organise the CEPHA29 Automatic Cephalometric Landmark Detection Challenge in conjunction with IEEE International Symposium on Biomedical Imaging (ISBI 2023). In this context, we provide the largest known publicly available dataset, consisting of 1000 cephalometric X-ray images. We hope that our challenge will not only derive forward research and innovation in automatic cephalometric landmark identification but will also signal the beginning of a new era in the discipline.
translated by 谷歌翻译
The task of automatic text summarization produces a concise and fluent text summary while preserving key information and overall meaning. Recent approaches to document-level summarization have seen significant improvements in recent years by using models based on the Transformer architecture. However, the quadratic memory and time complexities with respect to the sequence length make them very expensive to use, especially with long sequences, as required by document-level summarization. Our work addresses the problem of document-level summarization by studying how efficient Transformer techniques can be used to improve the automatic summarization of very long texts. In particular, we will use the arXiv dataset, consisting of several scientific papers and the corresponding abstracts, as baselines for this work. Then, we propose a novel retrieval-enhanced approach based on the architecture which reduces the cost of generating a summary of the entire document by processing smaller chunks. The results were below the baselines but suggest a more efficient memory a consumption and truthfulness.
translated by 谷歌翻译
Image generation and image completion are rapidly evolving fields, thanks to machine learning algorithms that are able to realistically replace missing pixels. However, generating large high resolution images, with a large level of details, presents important computational challenges. In this work, we formulate the image generation task as completion of an image where one out of three corners is missing. We then extend this approach to iteratively build larger images with the same level of detail. Our goal is to obtain a scalable methodology to generate high resolution samples typically found in satellite imagery data sets. We introduce a conditional progressive Generative Adversarial Networks (GAN), that generates the missing tile in an image, using as input three initial adjacent tiles encoded in a latent vector by a Wasserstein auto-encoder. We focus on a set of images used by the United Nations Satellite Centre (UNOSAT) to train flood detection tools, and validate the quality of synthetic images in a realistic setup.
translated by 谷歌翻译
This work considers the path planning problem for a team of identical robots evolving in a known environment. The robots should satisfy a global specification given as a Linear Temporal Logic (LTL) formula over a set of regions of interest. The proposed method exploits the advantages of Petri net models for the team of robots and B\"uchi automata modeling the specification. The approach in this paper consists in combining the two models into one, denoted Composed Petri net and use it to find a sequence of action movements for the mobile robots, providing collision free trajectories to fulfill the specification. The solution results from a set of Mixed Integer Linear Programming (MILP) problems. The main advantage of the proposed solution is the completeness of the algorithm, meaning that a solution is found when exists, this representing the key difference with our previous work in [1]. The simulations illustrate comparison results between current and previous approaches, focusing on the computational complexity.
translated by 谷歌翻译
Named Entity Recognition and Intent Classification are among the most important subfields of the field of Natural Language Processing. Recent research has lead to the development of faster, more sophisticated and efficient models to tackle the problems posed by those two tasks. In this work we explore the effectiveness of two separate families of Deep Learning networks for those tasks: Bidirectional Long Short-Term networks and Transformer-based networks. The models were trained and tested on the ATIS benchmark dataset for both English and Greek languages. The purpose of this paper is to present a comparative study of the two groups of networks for both languages and showcase the results of our experiments. The models, being the current state-of-the-art, yielded impressive results and achieved high performance.
translated by 谷歌翻译
The goal of autonomous vehicles is to navigate public roads safely and comfortably. To enforce safety, traditional planning approaches rely on handcrafted rules to generate trajectories. Machine learning-based systems, on the other hand, scale with data and are able to learn more complex behaviors. However, they often ignore that agents and self-driving vehicle trajectory distributions can be leveraged to improve safety. In this paper, we propose modeling a distribution over multiple future trajectories for both the self-driving vehicle and other road agents, using a unified neural network architecture for prediction and planning. During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities. Our approach does not depend on any rule-based planners for trajectory generation or optimization, improves with more training data and is simple to implement. We extensively evaluate our method through a realistic simulator and show that the predicted trajectory distribution corresponds to different driving profiles. We also successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort. The code for training and testing our model on a public prediction dataset and the video of the road test are available at https://woven.mobi/safepathnet
translated by 谷歌翻译
Chronic pain is a multi-dimensional experience, and pain intensity plays an important part, impacting the patients emotional balance, psychology, and behaviour. Standard self-reporting tools, such as the Visual Analogue Scale for pain, fail to capture this burden. Moreover, this type of tools is susceptible to a degree of subjectivity, dependent on the patients clear understanding of how to use it, social biases, and their ability to translate a complex experience to a scale. To overcome these and other self-reporting challenges, pain intensity estimation has been previously studied based on facial expressions, electroencephalograms, brain imaging, and autonomic features. However, to the best of our knowledge, it has never been attempted to base this estimation on the patient narratives of the personal experience of chronic pain, which is what we propose in this work. Indeed, in the clinical assessment and management of chronic pain, verbal communication is essential to convey information to physicians that would otherwise not be easily accessible through standard reporting tools, since language, sociocultural, and psychosocial variables are intertwined. We show that language features from patient narratives indeed convey information relevant for pain intensity estimation, and that our computational models can take advantage of that. Specifically, our results show that patients with mild pain focus more on the use of verbs, whilst moderate and severe pain patients focus on adverbs, and nouns and adjectives, respectively, and that these differences allow for the distinction between these three pain classes.
translated by 谷歌翻译